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A detailed characterization of stability islands in area-preserving maps is introduced on the basis of the
resonance partitionof phase space and it is used to define chaotic stickiness in these maps. It is shown that a
general island can be characterized by a well-defined quasiregularity “type,” specifying the sequence of reso-
nances visited by the island. In particular, a “tangle” island lies entirely not just within the turnstile lobe of a
resonance but also within theturnstile overlapof two resonances. Chaotic stickiness to a given island is then
defined as the coincidence of the type of a chaotic orbit with that of the island in some time interval. This
definition allows one to study stickiness systematically onall time scales, including short or nonasymptotic
time regimes, as illustrated in the case of an accelerator-mode island of the standard map. A physically
significant identification of the “sticky layer” and its “sublayers” in this case is made and discussed.
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I. INTRODUCTION

Regular-motion components in generic Hamiltonian sys-
tems usually have a strong impact on chaotic dynamics and
transportf1–17g. A well-known and significant phenomenon
is the “stickiness” of chaotic orbits to the boundaries of sta-
bility islands, causing anomalous chaotic transport
f1,3,11–17g. Area-preserving maps with an integrable limit
feature two distinct kinds of islandsf18g ssee also Sec. IIId:
sad resonance islands, lying forever within a given resonance
and having a near-integrable limit, andsbd “tangle” islands,
lying in the turnstile lobe of a resonance and therefore visit-
ing also the exterior of the resonance. These islands are born
by bifurcation and have no near-integrable continuation. An
important case of a tangle island is the “accelerator-mode”
island sAI d, featured by systems having some periodicity in
phase space, such as the mapss1d below. Stickiness to the
boundaries of AI’s can lead to a superdiffusion of the chaotic
motion f11–17g.

Stickiness is usually conceived as the long-time trapping
of chaotic orbits in extremely complex dynamical
structures—e.g., islands-around-islands hierarchiesf3g—sur-
rounding the boundary of a given island and adjacent to it. It
seems then impossible to define stickiness precisely and un-
derstand it completely in terms of all these structures. In this
paper, we introduce a detailed characterization of stability
islands on the basis of theresonance partitionof phase space
f4–10g. We then show that this characterization leads in a
natural way to a precise generalized definition of stickiness.
This definition allows us to study stickiness systematically
on all time scales, including short or nonasymptotic time
regimes. We shall focus on kicked-rotor maps on the cylin-
der,

M: pn+1 = pn + Kfsxnd, xn+1 = xn + pn+1 mod 2p, s1d

where p is the angular momentum,x is the angle,K is a
nonintegrability parameter, andfsx+2pd= fsxd. Strong nu-
merical evidencef4,9g and exact resultsf5,7g indicate that at
least for a subclass of mapss1d the rotational resonances,
suitably definedssee Sec. IId, give a complete partition of

phase space in the absence of separating tori; this implies a
“quasiregularity” of almost all the orbits, specified by their
“type”—i.e., the sequence of resonances visitedf8,9g ssee a
summary in Sec. IId. We then show in Sec. III that a general
island chain can be characterized by a well-defined type—
i.e., the type of its central stable periodic orbit. The statement
that a tangle island lies in a turnstile lobef18g is sharpened:
it actually lies entirely within theturnstile overlapof two
resonances. In Sec. IV, chaotic stickiness is defined as the
coincidence of the type of a chaotic orbit with that of a given
island chain in some time interval. On the basis of this defi-
nition, first aspects of stickiness in a nonasymptotic time
regime are studied in detail in the case of an AI of the stan-
dard map. A physically significant identification of the
“sticky layer” and its “sublayers” in this case is made and
discussed in the concluding sectionsSec. Vd.

II. RESONANCE PARTITION AND ROTATIONAL
QUASIREGULARITY

We summarize here the construction of rotational reso-
nancesf4g for the standard mapfmap s1d with fsxd=sinsxdg
and the related notion of “quasiregularity”f8,9g. For any
rational numberl /m sl andm are coprime integersd and for
arbitrarily largeK, the standard map possesses one hyper-
bolic periodic orbitsPOd having periodm sxm=x0, pm=p0d
and the order-preserving sor monotonicityd property
f7,10,19g; i.e., the relative positions ofxn in f0,2pd are the
same as those ofxn=xn

s0d in the K=0 case of a pure rotation
with winding numberl /m: xn

s0d=x0
s0d+2pnl /m mod 2p, n

=0, . . . ,m−1. A “gap” is a pair of PO points having neigh-
boring values ofxn mod 2p. The gap widths in thex direc-
tion are not all equal to 2p /m, as in theK=0 case, but due to
the order-preserving property, the iterate of a gap is still a
gap. One gap, called the “principal” gap, appears to be al-
ways symmetrically positioned around the “dominant” sym-
metry line x=p—i.e., p−xL=xR−p, whereL and R denote
the left and right points, respectively, of the principal gap.
The l /m resonancef20g and itsturnstilesare now defined as
follows ssee also Figs. 1 and 2d. We denote byZs0dsl /md the

PHYSICAL REVIEW E 71, 036222s2005d

1539-3755/2005/71s3d/036222s7d/$23.00 ©2005 The American Physical Society036222-1



regionLURD ssee Fig. 1 for the case ofl /m=0/1d, bounded
by pieces of the stable and unstable manifolds ofL and R
under the mapMm. Here U sDd is a primary homoclinic
intersection—i.e., the upperslowerd intersection closest
to the line x=p from the right sfrom the leftd. The l /m
resonance is then the chain ofm zones Zsndsl /md
=M−nZs0dsl /md, n=0, . . . ,m−1; see Fig. 2. Clearly, the zone
Zsmdsl /md=M−mZs0dsl /md lies again in the principal gap and

differs from Zs0dsl /md by two turnstiles created by ho-
moclinic oscillations underM−m; see Fig. 1. Each turnstile
consists of two lobes of equal area. By construction, the
lobes outsidesinsided Zs0dsl /md form the region enteringsex-
itingd resonancel /m. Generally, an exitingl /m turnstile lobe
overlaps with an enteringl8 /m8 turnstile lobe forl8 /m8 suf-
ficiently close tol /m; see Fig. 3. Thisturnstile overlapsTOd
Osl /m→ l8 /m8d is precisely the region in resonancel /m es-
caping to resonancel8 /m8 in one iteration.

Strong numerical evidencef4,9g and exact resultsf5g in-
dicate that in the absence of rotational tori—i.e., forK.Kc
<0.9716—the resonances constructed as above give a com-
pletepartition of phase spacef21g. This seems to hold also
for more general maps possessing some “reversibility” sym-
metry f4g—e.g., mapss1d with fs−xd=−fsxd—and can be
rigorously proven for the sawtooth mapfwith fsxd=x for
−p,x,p and fs−pd=0g f7g which is a good approximation
of the standard map for largeK. The resonance partition
implies that a general orbitsexcept for a zero-measure set of
aperiodic orbits—e.g., cantorid must have all its points within
resonances and must therefore perform a quasiregular motion
as follows. Suppose that the initial point of the orbit lies in
zone Zsndsl /md=M−nZs0dsl /md, for some n=0, . . . ,m−1.
Then, aftern iterations, it will lie in the principal zone
Zs0dsl /md. If it does not lie in an exiting turnstile lobe, it will
visit again the m zones of resonancel /m, returning to
Zs0dsl /md afterm iterations. If, on the other hand, it lies in an
exiting turnstile lobe, more precisely in some TOOsl /m
→ l8 /m8d sseef22gd, it will escape to zoneZsm8−1dsl8 /m8d of
resonancel8 /m8, where it will perform at least a finite num-
ber of rotationssof m8 iterations eachd before escaping to
another resonance. Thus, a general orbit is a sequence of
quasiregular segments, each lying in some resonancel r /mr,
−`, r ,`, and having a length ofqrmr iterations, whereqr
is the number of rotations performed inl r /mr or number of

FIG. 1. RegionLURD ssolid linesd: principal zoneZs0d of reso-
nancel /m=0/1 of thestandard map forK=6.4717sstrong-chaos
regimed. This zone, which is the resonance itself in thism=1 case,

is bounded by piecesDLW, LUW, URW, andRDW of the stable and un-
stable manifolds of the hyperbolic fixed pointL sor Rd. The upper
slowerd turnstile consists of the exiting lobeEU sEDd and the enter-
ing lobe IU sIDd, which is outside the resonance. The arrows indi-
cate period-1 accelerator-mode islandssAI’s d surrounded by five-
island chainsssee more details in Fig. 4d. The AI’s are clearly tangle
islands lying in the exiting lobesEU andED.

FIG. 2. Chaotic components of resonances 1/3, 1/2, and 3/4 of
the standard map forK=1.3, calculated using the efficient method
introduced in Ref.f9g, which avoids the problem of finding the
resonance boundaries. The turnstilessnot shownd are always asso-
ciated with the principal zone in the principal gapLR.

FIG. 3. Resonances 0/1 and 1/1 of the standard map forK
=6.4717 scompare with Fig. 1d. The regionOD=Os0/1→1/1d
fOU=Os1/1→0/1dg is the overlap of the exiting lobe of the upper
flowerg turnstile of 0/1f1/1g with the entering lobe of the lower
fupperg turnstile of 1/1 f0/1g. The AI’s indicated in Fig. 1 are
shown also here. Clearly, they lie entirely withinOD andOU.
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successive visits ofl r /mr. We denote this quasiregular se-
quence byt= . . . ,sl r /mrdqr

,sl r+1/mr+1dqr+1
, . . ., and saythat

the orbit is of type t f8,9,20g. This is a considerable exten-
sion of the concept of Birkhoff typesl ,md or l /m of a PO
f10,19g. In general, there are infinitely many orbits of given
type t, forming a setCt. In some casesf7,8g, Ct can be
rigorously shown to be a fractal set with exactly calculable
fractal properties.

III. TYPE SPECIFICATION OF STABILITY ISLANDS

In this section, we consider the type specification of PO’s
for maps s1d f23g and show that it can be extended in a
natural way to general stability islands. A PO of periods for
mapss1d is generally defined byxs=x0, ps=p0+2pw, where
w is an integer, generally nonzero; forwÞ0, the PO is an
“accelerator mode.” In fact, this definition reduces to the
usual one,xs=x0, ps=p0, if Eq. s1d is taken modulo the torus
0øx,p,2p fthis can be always done consistently since Eq.
s1d is 2p-periodic inpg. Clearly, a PO can visit only a finite
number of resonances modulo this torus. Thus, on the cylin-
der, it will generally visit a set of, say,d resonances
hl r /mrjr=1

d and all the translationshl r /mr +bw̄jr=1
d of this set in

the p direction, whereb takes all the integer values andw̄ is
some integer which will be related tow below. Therefore, the
type t of the PO must be essentially the repetition of some
“block” G,

t = . . . ,Gs− w̄d,Gs0d,Gsw̄d,Gs2w̄d, . . . , s2d

where

Gsbw̄d = sl1/m1 + bw̄dq1
, . . . ,sld/md + bw̄dqd

s3d

and qr is the number of rotations performed in resonance
l r /mr +bw̄. Now, if the periodic cycle of the PO is completed
exactly after visiting one block, thenw=w̄ ands= s̄, where

s̄= o
r=1

d

qrmr s4d

is the basic period. Generally, however, the periodic cycle is
completed only after visiting more than one block—say,c
blocks. Thenw=cw̄ and s=cs̄. The type of the PO will be
thus specified bysG ,w̄,cd, whereG stands, e.g., forGs0d.

Let us now consider astablePO, such that each of itss
points is the “center” of an island in a chain ofs islands. In
the simplest case, all the PO points lie within one resonance
l /m soutside the exiting turnstile lobesd, so that Gs0d
=sl /mdq and w̄=0 in Eqs. s2d and s3d. Clearly, the type
sG ,0 ,cd in this case is the same assG8 ,0 ,cqd, where G8
=sl /md1, so that we can assume thatq=1. The PO performs
preciselycl rotations in one period ofs=cm iterations—i.e.,
xcm=x0+2pcl sno mod 2p takend. Since the resonance
boundaries are stable and unstable manifolds which cannot
cross an island, all the islands in the corresponding chain
must lie within the resonance, outside the exiting turnstile
lobes, like the PO points. One can therefore define the type
of this chainsa “resonance” island chaind to be the same as
that of its central PO.

The repetition indexc can be related to the concept of
“class” of a POf10g, which we now recall. In each resonance
l /m, there exists an elliptic or, for large parameterK,
hyperbolic-with-reflection PO having periodm and the
order-preserving propertysdefined in Sec. IId f4g. This is a
“class-0” PO. A PO which rotates under the mapMm around
a point of the class-0 PO is a class-1 PO; we denote byc1 the
period of this PO underMm. In general, a class-j PO s j
.0d rotates with period cj under the map Mc̄m sc̄
=c0c1c2¯cj−1, c0=1d around a PO point of classj −1 and
has preciselyc= c̄cj points in each zone of resonancel /m.
Stable class-j PO’s are generally the “center” of correspond-
ing class-j island chains which form, for allj , an “islands-
around-islands” hierarchy within a resonancel /m. As ex-
amples, Fig. 2 shows island chains of class 0 in resonances
1/3 and 1/2, of class 1 in resonances 1/3, 1/2, and 3/4, and
of class 2 in resonance 1/2.

In the case that the stable PO visits more than one
resonance—i.e.,d.1 and/orw̄Þ0—the last PO point in a
segmentsl r /mr +bw̄dqr

of Gsbw̄d necessarily lies in the TO
Osl r /mr +bw̄→ l8 /m8d, where l8 /m8= l r+1/mr+1+bw̄ for
r ,d and l8 /m8= l1/m1+sb+1dw̄ for r =d. The island con-
taining this point is clearly a “tangle” islandf18g, since the
TO is part of an exiting turnstile lobe of resonancel r /mr
+bw̄. Actually, the tangle island must lieentirely within the
TO. This is because the TO is separated from the rest of the
exiting turnstile lobe by stable or unstable manifolds which
would cross the tangle island if only part of this island lies in
the TO. The islands associated with the other points in the
segmentsl r /mr +bw̄dqr

must lie entirely within resonance
zones, outside the exiting turnstile lobes, like resonance is-
lands. Thus, the entire island chain can be again character-
ized by a well-defined type, that of its central PO. For given
typesG ,w̄,cd, there arecqr islands in each zone of resonance
l r /mr +bw̄; in the principal zoneZs0d, c of these islands lie in
the TO.

As an example, we consider stable accelerator-mode PO’s
of the standard mapf11g. The windows of the parameterK
for which these PO’s exist in the case ofs=1 sfixed pointsd
can be easily determinedf11g:

2puwu , K , Îs2pwd2 + 16. s5d

Such a fixed point is the center of an AI. Sinces=1, it fol-
lows from s=cs̄ and Eq.s4d that d=q1=m1=c=1, and one
can choosel1/m1=0/1. Thus, the AI visits only mainsfirst-
orderd resonances and its type ist=(s0/1d1,w,1). Figures 1,
3, and 4 show the case ofw=1 for K=6.4717. It is clear that
the AI, which is a tangle islandf18g, indeed lies entirely
within the TO of resonances 0/1 and 1/1. For generalw, this
is the TO of 0/1 andw/1. We remark that this TO starts to
emerge for values ofK much smaller than those given by Eq.
s5d—i.e., K<2suwu−1d for large uwu. The last result can be
easily derived from the conditions of TO for the sawtooth
mapf7g, which approximates well the standard map for large
K.

Figure 4 shows a class-1 chain of five islands surrounding
the s=1 AI. For K<6.476 939, this chain appears to be the
beginning of a self-similar islands-around-islands hierarchy
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with 11 islands in each class of orderj .1 f13g. This hierar-
chy may then be specified by the general typet=(s0/
1d1,1 ,c), wherec=5311j−1.

IV. DEFINITION OF CHAOTIC STICKINESS

We now show that the type specification of stability is-
lands allows us to introduce in a natural way a precise gen-
eralized definition of chaotic stickiness. We first note that the
type of a chaotic orbit sticking sufficiently close to the
boundary of an island must coincide with the type of the
island during the stickiness process. However, this coinci-
dence of the types may also occur if the chaotic orbit isnot
“very” close to the island boundary: It expresses the fact that
the chaotic orbit follows the itinerary of the island, specified
by the type on the rotational level. This observation is at the
basis of our definition: We say that a chaotic orbit of typetc
“sticks” to an island chain of typet=sG ,w̄,cd if tc coincides
with t during a time interval of, say,N iterations. This means
thattc andt have a common segment ofN resonance zones.
It is easy to see that according to this definition the chaotic
orbit sticks simultaneously to the island chains of typet
=sG ,w̄,cd for all admissible values ofc; the set of chains
with c.1 will include, e.g., islands-around-islands hierar-
chies near the boundary of a class-0sc=1d island ssee pre-
vious sectiond. One expects that if strong trapping occurs in a
narrow “sticky layer” surrounding this boundary and adja-
cent to it, most chaotic orbits of typetc will approach this
layer asN→`.

To study in some detail first aspects of stickiness based on
the definition above, let us restrict ourselves, for simplicity,
to the important case of an AI with periods=1 and typet
=(s0/1d1,w,1) ssee the example in the previous sectiond. We
denote byO the TO of 0/1 andw/1 in which this AI lies and

by M̄ the maps1d taken modulo the basic torus 0øx, p
,2p. Consider now all the chaotic orbits whose typetc
coincides with t in some time intervaln=n1, . . . ,n2 sn2

Þn1d but differs from t at times n=n1−1 and n=n2+1.
Thus, t and tc have a common segment ofN=n2−n1+1
resonance zones, given bysn1w/1d1, . . . ,sn2w/1d1, so that
the chaotic orbit “acceleratestogether” with the AI in the

time interval above. Under the mapM̄, the orbit will lie in O
for n=n1, . . . ,n2−1 but outsideO for n=n1−1 and n=n2
sotherwise,t and tc will coincide also at timesn=n1−1
and/orn=n2+1d. The segment of the orbit inO will there-
fore consist ofN−1 points. We denote byt+ st−d the forward

sbackwardd exit time of any of these points fromO underM̄.
It is easy to see that thetransit time t, defined byf24g t= t+
+ t−−1, is equal to the length of the segment,t=N−1. The set
of points inO having a given transit timet will be denoted
by Ct. One can partitionO into the setsCt, O=øt=1

` Ct.
As an example, we consider again the AI of the standard

map forK=6.4717 andw=1. Figure 4 shows a chaotic orbit
sticking to this AI for a long time interval ofN=4 563 191
iterations; i.e., the orbit lies in the main resonancen/1 for
timesn in this interval. To determine the resonance in which
the orbit lies at given timen, we use, as in Fig. 2, the effi-
cient method introduced in Ref.f9g, which avoids com-
pletely the problem of finding the resonance boundaries. Us-
ing this method, we found that the forward exit time of the

initial sn=0d point of the orbit above from the TO underM̄ is
t+=3 591 053 sincen= t++1 is the first time at which the
orbit is not in resonancen/1 sbut rather inn+1/5d; then,
t−=N− t+. The method was also used to calculate accurately
the setsCt for moderate values oft, starting from a large grid
of initial conditions covering uniformly the TO. The results
are shown in Figs. 5 and 6. We can see from Fig. 6 that ast
is increasedCt becomes highly concentrated on an “annulus”
surrounding the AI boundary and approaching it. Fort=99
fFig. 6scdg and t=499 fFig. 6sddg, Ct already “wraps around”

FIG. 4. Long chaotic orbit sticking around the AI that lies in the
turnstile overlapsTOd OD shown in Fig. 3ssee more details in the
textd.

FIG. 5. Magnification of the TOOD in Fig. 3, showing the
“trapped” setsC1 sgrey regionsd andC5 sblack regionsd. These sets
were calculated using the method mentioned in the caption of Fig.
2, starting from a grid of initial conditions covering the TO and
having a resolution ofDx/2p=Dp/2p=10−4. The setC1 coincides
with C1

s0d ssee definition ofCt
s0d in the textd and appears to be indeed

the first stage in the construction of a horseshoe, in consistency with
relation s6d.
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some island chains near the AI boundary. The structure ofCt
becomes more intricate due to the development of new ho-
moclinic intersections and oscillations. Most prominent os-
cillations are the five protuberances indicated by arrows in
Fig. 6sbd, which follow faithfully the shape of the five-island
chain surrounding the AI. Interesting features of the ho-
moclinic structure ofCt can be exhibited more clearly by
looking, for t odd, at the subsetCt

s0d of Ct consisting of all the
points with t+= t−=st+1d /2. It is easy to see that the setCt

s0d

satisfies the relation

Ct
s0d # ù

n=−t++1

t+−1

M̄nO − ù
n=−t+

t+
M̄nO. s6d

Since the TOO is a region bounded by stable and unstable
manifolds, one expects from the form of the right-hand side
of relations6d that the structure ofCt

s0d should approximately
resemble that of a horseshoe. This is shown in Fig. 5 fort
=1 sC1

s0d=C1d and in the inset of Fig. 6sad for t=19. A pos-

sible concentration ofCt
s0d around the islands boundaries as

t→` is consistent with relations6d and the fact that the set

of all islands inO is obviously contained inùn=−`
` M̄nO.

We denote bykt the number of segments of lengthstransit
timed t having initial conditions on a large grid covering
uniformly the TO; the total number of points inCt is thentkt.
The quantitykt corresponds to the “trapping statistics” first
studied by Karneyf1g in connection with the stickiness prob-
lem in the Hénon map. Figure 7 shows a log-log plot ofkt in
the time interval 1ø tø103 for the example above. We see
that ast is variedkt exhibits oscillations, which appear also
for small t in the main case studied in Ref.f1g fsee Fig. 6sad
thereg. In our case, the dynamical origin of these oscillations
can be easily understood: they are due to the birth and de-
velopment of new homoclinic structures inCt as t is in-
creased; compare, e.g., Fig. 6sbd st=29,kt=50 909d with Fig.
6sad st=19, kt=11 747d. On average,kt clearly decays as a
power law,kt~ t−a, a<1.61. This decay cannot continue for
arbitrarily larget since this will lead to a non-normalizable

FIG. 6. Trapped setsCt in the TOOD of Fig. 3: sad t=19, sbd t=29, scd t=99, andsdd t=499. Plotssad–scd were produced starting from
the grid of initial conditions used in Fig. 5. In plotsdd, a grid of higher resolution,Dx/2p=Dp/2p=5310−5, was used. The inset insad
shows a small portion of the setC19

s0d, lying within the rectangular region indicated. This set appears to be a high-order approximation of a
horseshoe.
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function tkt for the number of points inCt. An asymptotic
power-law decay ofkt must feature an exponenta.2. The
time interval considered thus belongs to a nonasymptotic
time regime. A transition from the decay in Fig. 7 to a faster
decay for large values oft.103 could not be observed due to
limitations in our available computational resources. The ac-
curacy of the results in Figs. 6 and 7 was carefully checked
by using a variety of different grids for the initial conditions
in the TO.

V. DISCUSSION AND CONCLUSIONS

We now discuss some of the main results above. Accord-
ing to a well-known phenomenological scenariof11,15g, the
superdiffusion of a chaotic ensemble,kpn

2l~nm with 1,m
,2, is due to the long-time trapping of the chaotic orbits in
a narrow “sticky layer” surrounding the boundary of an AI
and adjacent to itssuch as the sticky region in Fig. 4d. During
the trapping time, an orbit accelerates together with the AI
and, after it leaves the layer, it enters the “chaotic sea” where
it performs normal diffusion. A basic question concerns a
precise and physically significant identification of the sticky
layer—i.e., precisely which part of the chaotic region accel-
erates with the AI for at least some finite number of itera-
tions? The results in the previous section provide an answer
to this question. An orbit accelerates with the AI in some
time interval if and only if it “sticks” to the AI according to

the proposed definition of stickiness. Initial conditions for all
the sticking orbits formpreciselythe TO region containing
the AI. Thus, a physically significant sticky layer can be
identified as thechaotic component of the TO. This is sepa-
rated from the rest of the chaotic regionsthe “chaotic sea”
which doesnot accelerated by sharp boundaries—i.e., pieces
of stable and unstable manifolds.

This identification of the sticky layer provides its natural
extensionmuch beyond a narrow strip adjacent to the AI
boundary where the sticking timet is usually quite long. The
TO can be fully partitioned into sticky “sublayers”Ct, where
Ct, tù1, consists of all orbit segments having precisely
length t in the TO—i.e., segments accelerating with the AI
for preciselyt iterations. Ast is increased,Ct gradually ap-
proaches the AI boundaryssee Fig. 6d. The consideration of
all sticking times is necessary for studying the superdiffusion
and other stickiness-related phenomena in a nonasymptotic
time regimeswhich can bevery long in practiced and for
understanding how precisely these phenomena set into their
asymptotic behaviorsassuming it existsd. It is also necessary
for investigating the fingerprints of classical superdiffusion
in the quantized version of the system, where dynamical lo-
calization implies a finite maximal spread of a wave packet,
reached in a finite timet f25g.

A first study of a nonasymptotic time regime was per-
formed in the previous section. The accurate results in Figs.
6 and 7 show that the usual features attributed to “stickiness”
in the asymptotic time limitt→` are exhibited byCt already
for t,103 swith Ct still far from being adjacent to the AI
boundaryd: A relatively high concentration of orbit points on
a subregion ofCt fsee Figs. 6scd and 6sddg and a clear power-
law decay of the trapping statisticskt ssee Fig. 7d.

These results cannot be reproduced by any empirical ap-
proach in which the trapping near an island is studied by
enclosing the island in anarbitrary region, a “box”ssee, e.g.,
Ref. f1gd. As one can see from Figs. 5 and 6,no such region,
except of the TO, can completely contain the trapped accel-
erating setsCt for all t if it will not also contain nonrelevant
parts of the chaotic sea which do not accelerate but will be
nevertheless considered as “trapped.” In general, all the sets
Ct sticking to a given island chain are determined from the
ensemble of chaotic orbits whose typessequence of reso-
nances visitedd coincides with that of the island chain in
some time interval. This ensemble is easily found using the
efficient method developed in Ref.f9g which completely
avoids the problem of calculating the resonance boundaries.
Thus, the dynamically well-defined and practically appli-
cable approach to stickiness introduced in this paper can
form the basis for a most systematic study of anomalous
chaotic transport and related phenomena.

f1g C. F. F. Karney, Physica D8, 360 s1983d.
f2g R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D13,

55 s1984d.
f3g J. D. Meiss and E. Ott, Physica D20, 387 s1986d.

f4g R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D27,
1 s1987d, and references therein.

f5g Q. Chen, Phys. Lett. A123, 444 s1987d.
f6g I. Dana, N. W. Murray, and I. C. Percival, Phys. Rev. Lett.62,

FIG. 7. Log-log plot of the “trapping statistics”kt in the TOOD

of Fig. 3. The results were produced by starting, for allt, from the
high-resolution grid used in Fig. 6sdd. The linear fit to the data
ssolid lined has slope<−1.61.

O. BARASH AND I. DANA PHYSICAL REVIEW E 71, 036222s2005d

036222-6



233 s1989d.
f7g Q. Chen, I. Dana, J. D. Meiss, N. W. Murray, and I. C. Per-

cival, Physica D46, 217 s1990d.
f8g I. Dana, Phys. Rev. Lett.64, 2339s1990d.
f9g I. Dana, Phys. Rev. Lett.70, 2387 s1993d, and references

therein.
f10g J. D. Meiss, Rev. Mod. Phys.64, 795 s1992d, and references

therein.
f11g R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theor.

Phys. 85, 1013s1991d.
f12g G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, Chaos7,

159 s1997d.
f13g S. Benkadda, S. Kassibrakis, R. White, and G. Zaslavsky,

Phys. Rev. E55, 4909s1997d.
f14g R. B. White, S. Benkadda, S. Kassibrakis, and G. M.

Zaslavsky, Chaos8, 757 s1998d.
f15g G. M. Zaslavsky and M. Edelman, Chaos10, 135 s2000d.
f16g G. M. Zaslavsky, Phys. Rep.371, 461 s2002d, and references

therein.
f17g I. Dana, Phys. Rev. E69, 016212s2004d.

f18g V. Rom-Kedar and G. Zaslavsky, Chaos9, 697 s1999d, and
references therein.

f19g Ordered or monotone PO’s are also known asBirkhoff PO’s;
see, e.g., Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys.
111, 689 s2004d.

f20g In previous worksf4–9g, a resonance was denoted bysl ,md
and a similar notation was used in the expression of the typet
of a general orbitf8,9g. For simplicity, however, we use here
the winding-number notationl /m.

f21g For KøKc, the resonances give a partition of any phase-space
region bounded by two rotational tori but within which no such
tori exist.

f22g The resonance partition implies that an exiting turnstile lobe of
a resonancel /m can be completely partitioned into the turn-
stile overlapsOsl /m→ l8 /m8d with all the other resonances.
See, e.g., Refs.f6–8g.

f23g The type specification of PO’s, as presented here, is substan-
tially different from that given in Ref.f8g.

f24g J. D. Meiss, Chaos7, 139 s1997d.
f25g A. Iomin, S. Fishman, and G. M. Zaslavsky, Phys. Rev. E65,

036215s2002d.

TYPE SPECIFICATION OF STABILITY ISLANDS AND… PHYSICAL REVIEW E 71, 036222s2005d

036222-7


