PHYSICAL REVIEW E 71, 036222(2005

Type specification of stability islands and chaotic stickiness
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A detailed characterization of stability islands in area-preserving maps is introduced on the basis of the
resonance partitiorof phase space and it is used to define chaotic stickiness in these maps. It is shown that a
general island can be characterized by a well-defined quasiregularity “type,” specifying the sequence of reso-
nances visited by the island. In particular, a “tangle” island lies entirely not just within the turnstile lobe of a
resonance but also within tharnstile overlapof two resonances. Chaotic stickiness to a given island is then
defined as the coincidence of the type of a chaotic orbit with that of the island in some time interval. This
definition allows one to study stickiness systematicallyatintime scales, including short or nonasymptotic
time regimes, as illustrated in the case of an accelerator-mode island of the standard map. A physically
significant identification of the “sticky layer” and its “sublayers” in this case is made and discussed.
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I. INTRODUCTION phase space in the absence of separating tori; this implies a

Reqular-motion components in aeneric Hamiltonian “quasiregularity” of almost all the orbits, specified by their
egutar-motion components in generic ramitonian Sys-. ype"—i.e., the sequence of resonances visiie®] (see a

tems usually have a strong impact on chaotic dynamics an Ummary in Sec. )| We then show in Sec. Ill that a general

transporf1-17. A well-known and significant phenomenon island chain can be characterized by a well-defined type—

is the "stickiness” of chaotic orbits to the boundaries of Sta"|.e., the type of its central stable periodic orbit. The statement

[bZII.IItBylllsjll%ni\s, causing anomalou_tsh chaottlc glanls.pqtrtthat a tangle island lies in a turnstile lopE8] is sharpened:
9,111 Aréa-preserving maps with an integrable fimit ;, actually lies entirely within theturnstile overlapof two

feature two distinct kinds of island4.8] (see also Sec. Ii resonances. In Sec. IV, chaotic stickiness is defined as the

(8) resonance islands, lying forever within a given resonanceyincidence of the type of a chaotic orbit with that of a given

lar_1d h_avtlrr]lg ta nezta_lr-lr:tebgratf)le limit, ado) tandglt(; |slfands,_ i island chain in some time interval. On the basis of this defi-
lying In the turnstile fobe of a resonance and theretore visi ‘nition, first aspects of stickiness in a nonasymptotic time

. ; . . ; F@gime are studied in detail in the case of an Al of the stan-
by bifurcation and have no near-integrable continuation. An;;iard map. A physically significant identification of the

important case of a tangle island is the accelerator-modeustiCky layer” and its “sublayers” in this case is made and

island (Al), featured by systems having some periodicity in . . ; -
phase space, such as the mépsbelow. Stickiness to the discussed in the concluding sectigBec. \J.

boundaries of Al's can lead to a superdiffusion of the chaotic
motion [11—17. Il. RESONANCE PARTITION AND ROTATIONAL

Stickiness is usually conceived as the long-time trapping QUASIREGULARITY

of chaotic orbits in extremely complex dynamical \We summarize here the construction of rotational reso-
structures—e.g., islands-around-islands hierardi#gs-sur-  nanceq4] for the standard mafmap (1) with f(x)=sin(x)]
rounding the boundary of a given island and adjacent to it. lgnd the related notion of “quasiregularity8,9]. For any
seems then impossible to define stickiness precisely and URational numbet/m (I andm are coprime integeysand for
derstand it completely in terms of all these structures. In thigypitrarily largeK, the standard map possesses one hyper-
papel’, we introduce a detailed Chal’acterization Of Stabmt}bohc periodic orb|t(PO) having periodm (Xm:XOl pm:po)

islands on the basis of thesone_mce partitior_mf phase space and the order-preserving (or monotonicity property
[4-10. We then show that this characterization leads in 7,10,19; i.e., the relative positions of, in [0,2w) are the
natural way to a precise generalized definition of stickinessSame as those o¢1:x(o) in the K=0 case of a pure rotation
I e o b o Sy Sckiness syttt wiang rumber . 191« o 2

! g ymp =0,...,m-1. A“gap” is a pair of PO points having neigh-

gegimes. We shall focus on kicked-rotor maps on the cylin-boring values ok, mod 2. The gap widths in the direc-
er,

tion are not all equal to2/m, as in theK=0 case, but due to
M: Pres=Pr+ KF(X,), Xq1=X,+Pney mod 2, (1)  the order-preserving property, the iterate of a gap is still a

gap. One gap, called the “principal” gap, appears to be al-
where p is the angular momentunx is the angleK is a  ways symmetrically positioned around the “dominant” sym-
nonintegrability parameter, anf{x+2m)=f(x). Strong nu- metry line x=m—i.e., w—x =Xg— 7, whereL and R denote
merical evidencg4,9] and exact resultgh,7] indicate that at  the left and right points, respectively, of the principal gap.
least for a subclass of map4) the rotational resonances, Thel/m resonanc¢20] and itsturnstilesare now defined as
suitably defined(see Sec. )| give a complete partition of follows (see also Figs. 1 and.2Ne denote byz@(I/m) the
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FIG. 1. RegionLURD (solid line3: principal zonez©@ of reso-
nancel/m=0/1 of thestandard map foK=6.4717 (strong-chaos
regime. This zone, which is the resonance itself in this 1 case,
is bounded by piece@_f, L_U), U_Fe, and RD of the stable and un-
stable manifolds of the hyperbolic fixed point(or R). The upper
(lower) turnstile consists of the exiting lolg, (Ep) and the enter-
ing lobely (Ip), which is outside the resonance. The arrows indi-
cate period-1 accelerator-mode islari@d’s) surrounded by five-
island chaingsee more details in Fig)4The Al's are clearly tangle
islands lying in the exiting lobeE, and Ep.

regionLURD (see Fig. 1 for the case bfm=0/1), bounded
by pieces of the stable and unstable manifoldd. cind R
under the mapM™. Here U (D) is a primary homoclinic
intersection—i.e., the uppetlower) intersection closest
to the line x=7 from the right (from the lefy). The I/m
resonance is then the chain ah zones Z™(I/m)
=M™"2O0(1/m), n=0, ... m-1; see Fig. 2. Clearly, the zone
ZM(1/m)=M""2O(I/m) lies again in the principal gap and

p/i2n

x/2n

PHYSICAL REVIEW E 71, 036222(2005

p/2n

X/271

FIG. 3. Resonances 0/1 and 1/1 of the standard magKfor
=6.4717 (compare with Fig. 1 The regionOp=0(0/1—1/1)
[Oy=0(1/1—-0/1)] is the overlap of the exiting lobe of the upper
[lower] turnstile of 0/1[1/1] with the entering lobe of the lower
[uppel turnstile of 1/1[0/1]. The Al's indicated in Fig. 1 are
shown also here. Clearly, they lie entirely withDy andOy,.

differs from Z©(1/m) by two turnstiles created by ho-
moclinic oscillations undeM™; see Fig. 1. Each turnstile
consists of two lobes of equal area. By construction, the
lobes outsidéinside Z©(1/m) form the region enteringex-
iting) resonancé/m. Generally, an exiting/m turnstile lobe
overlaps with an entering/m’ turnstile lobe forl’/m’ suf-
ficiently close tol/m; see Fig. 3. Thigurnstile overlap(TO)
O(l/m—1'/m’) is precisely the region in resonanien es-
caping to resonandé/m’ in one iteration.

Strong numerical evidendé,9] and exact resultg5] in-
dicate that in the absence of rotational tori—i.e., Kor K,
~0.9716—the resonances constructed as above give a com-
plete partition of phase spacf1]. This seems to hold also
for more general maps possessing some “reversibility” sym-
metry [4]—e.g., maps(1) with f(-x)=—f(x)—and can be
rigorously proven for the sawtooth mdmvith f(x)=x for
—m<x<a andf(-7)=0][7] which is a good approximation
of the standard map for larg. The resonance partition
implies that a general orbi{except for a zero-measure set of
aperiodic orbits—e.g., cantoninust have all its points within
resonances and must therefore perform a quasiregular motion
as follows. Suppose that the initial point of the orbit lies in
zone ZMV(1/m)=M"2O9(I/m), for some n=0,... m-1.
Then, aftern iterations, it will lie in the principal zone
ZO(1/m). If it does not lie in an exiting turnstile lobe, it will
visit again them zones of resonancé/m, returning to
ZO(1/m) aftermiterations. If, on the other hand, it lies in an
exiting turnstile lobe, more precisely in some TQ(I/m
—1"Im’) (see[22)), it will escape to zone&™ V(1" /m’) of
resonancé’/m’, where it will perform at least a finite num-

FIG. 2. Chaotic components of resonances 1/3, 1/2, and 3/4 dper of rotations(of m’ iterations eachbefore escaping to

the standard map fd€=1.3, calculated using the efficient method
introduced in Ref[9], which avoids the problem of finding the
resonance boundaries. The turnstilest shown are always asso-

ciated with the principal zone in the principal gaR.

another resonance. Thus, a general orbit is a sequence of
quasiregular segments, each lying in some resonhihog,
—oo<r <o, and having a length af,m, iterations, where,
is the number of rotations performed lifm, or number of
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successive visits of./m,. We denote this quasiregular se- The repetition indexc can be related to the concept of
quence byr=... ,(Ir/m,)qr,(I,+1/mr+1)qr+l, ..., and saythat  “class” of a P 10], which we now recall. In each resonance
the orbit is oftype 7 [8,9,20. This is a considerable exten- I/m, there exists an elliptic or, for large parametey
sion of the concept of Birkhoff typél,m) or I/m of a PO hyperbolic-with-reflection PO having perioch and the
[10,19. In general, there are infinitely many orbits of given order-preserving propertydefined in Sec. )I[4]. This is a
type 7, forming a setC,. In some case$7,8], C, can be “class-0" PO. A PO which rotates under the ndf' around

rigorously shown to be a fractal set with exactly calculablea point of the class-0 PO is a class-1 PO; we denote btiye
fractal properties. period of this PO undeM™. In general, a clasp-PO (j

>0) rotates with periodc; under the mapM" (c
=CgC1C," **Cj-1, Cp=1) around a PO point of clags-1 and
lll. TYPE SPECIFICATION OF STABILITY ISLANDS has pl’eCiseI)C:a:j points in each zone of resonanblen.

In this section, we consider the type specification of PO'sStable clas§-PO’s are generally the “center” of correspond-
for maps (1) [23] and show that it can be extended in aing classj island chains which form, for alf, an “islands-
natural way to general stability islands. A PO of perifibr ~ around-islands” hierarchy within a resonariden. As ex-
maps(1) is generally defined by,=Xo, Ps=pPo+27W, Where amples, Fig. 2 shows island chains of class 0 in resonances
w is an integer, generally nonzero; far+0, the PO is an 1/3 and 1/2, of class 1 in resonances 1/3, 1/2, and 3/4, and
“accelerator mode.” In fact, this definition reduces to theOf class 2 in resonance 1/2.
usual onexs=X,, Ps=Po. if Eq. (1) is taken modulo the torus In the case that the stable PO visits more than one
0=x, p< 2 [this can be always done consistently since Eqreésonance—i.ed>1 and/orw+# 0—the last PO point in a
(1) is 2m-periodic inp]. Clearly, a PO can visit only a finite segment(l,/m +bw), of I'(bw) necessarily lies in the TO
number of resonances modulo this torus. Thus, on the cylinO(l,/m.+bw—1"/m’), where I"/m’'=l,/m.,;+bw for
der, it will generally visit a set of, sayd resonances r<d and!’/m’'=Il;/my+(b+1)w for r=d. The island con-
{I,/m}%, and all the translation§,/m, +bw}"_, of this setin  taining this point is clearly a “tangle” island 8], since the
the p direction, whereb takes all the integer values amdis  TO is part of an exiting turnstile lobe of resonanigém,
some integer which will be related wbelow. Therefore, the +bw. Actually, the tangle island must lientirely within the
type 7 of the PO must be essentially the repetition of someTO. This is because the TO is separated from the rest of the
“block” T, exiting turnstile lobe by stable or unstable manifolds which

_ _ would cross the tangle island if only part of this island lies in
7= ... I(=w),I'(0),F(W),I'(2w), ..., (2)  the TO. The islands associated with the other points in the
where segment(l,/m.+bw), must lie entirely within resonance
- zones, outside the exiting turnstile lobes, like resonance is-
I'(bw) = (Iy/my +bwg,, ... ,(Igd/mg + bw)g, (3)  lands. Thus, the entire island chain can be again character-
ized by a well-defined type, that of its central PO. For given

and g, is the nL!mber of.rot_ations performed .in resor“']‘ncetype(l“,w,c), there arecq, islands in each zone of resonance
I/ +bw. NOV\.” .'f. the periodic cycle of the PO is completed I,/m,+bw; in the principal zoneZ©, ¢ of these islands lie in
exactly after visiting one block, them=w ands=s, where tlrwe 'rl'O ' '

d As an example, we consider stable accelerator-mode PO'’s
s=2 qm (4)  of the standard mapl1]. The windows of the parametét
r=1 for which these PO’s exist in the case o1 (fixed point3

is the basic period. Generally, however, the periodic cycle i$an be easily determingd1]:
completed only after visiting more than one block—say, o2, 1
blocks. Thenw=cw ands=cs. The type of the PO will be 27w < K < (27w)* + 16. ®
thus specified byI",w,c), wherel stands, e.g., fof'(0). Such a fixed point is the center of an Al. Singe1, it fol-

Let us now consider atablePO, such that each of its  lows from s=cs and Eq.(4) that d=g;=m;=c=1, and one
points is the “center” of an island in a chain ®fslands. In  can choosé,/m,;=0/1. Thus, the Al visits only mairtfirst-
the simplest case, all the PO points lie within one resonancerde) resonances and its typeis ((0/1);,w,1). Figures 1,
I/m (outside the exiting turnstile lobgsso thatI'(0) 3, and 4 show the case wi=1 for K=6.4717. It is clear that
=(l/m), and w=0 in Egs.(2) and (3). Clearly, the type the Al, which is a tangle islan@18], indeed lies entirely
(I',0,c) in this case is the same &§’,0,cq), whereI" within the TO of resonances 0/1 and 1/1. For genetahis
=(I/m),, so that we can assume thggt 1. The PO performs is the TO of 0/1 andv/1. We remark that this TO starts to
preciselycl rotations in one period d=cm iterations—i.e., emerge for values d much smaller than those given by Eq.
Xem=Xot+2mcl (no mod 27 taken. Since the resonance (5)—i.e., K=2(lw|-1) for large |w|. The last result can be
boundaries are stable and unstable manifolds which cannetasily derived from the conditions of TO for the sawtooth
cross an island, all the islands in the corresponding chaimap[7], which approximates well the standard map for large
must lie within the resonance, outside the exiting turnstileK.
lobes, like the PO points. One can therefore define the type Figure 4 shows a class-1 chain of five islands surrounding
of this chain(a “resonance” island chairio be the same as thes=1 Al. For K=6.476 939, this chain appears to be the
that of its central PO. beginning of a self-similar islands-around-islands hierarchy
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FIG. 4. Long chaotic orbit sticking around the Al that lies in the __ FIC- 5. Magnification of the TQOp in Fig. 3, showing the
turnstile overlapTO) Op shown in Fig. 3(see more details in the trapped” set<’y (grey regiony andCs (black regions These sets
text). were ca_llculated using the _m_e_thod me_r!tloned in the caption of Fig.
2, starting from a grid of initial conditions covering the TO and
) ) ) ) o having a resolution oAx/27=Ap/27=10"%. The setC; coincides
with 11 islands in each Cl_a_ss of order 1 [13]. This hierar- with C(lo) (see definition of;'t(O) in the tex) and appears to be indeed
chy may then be specified by the general type((0/  the first stage in the construction of a horseshoe, in consistency with

1)1,1,c), wherec=5x 1171, relation (6).

#n,) but differs from 7 at timesn=n;-1 and n=n,+1.

IV. DEFINITION OF CHAOTIC STICKINESS Thusy 7 and Te have a common Segment N:nz_n1+1
We now show that the type specification of stability is- €SOnance zones, given tp,w/1),, (now/1)y, so that
r]t_he chaotic orbit acceleratestogemer with the Al in the

lands allows us to introduce in a natural way a precise gen-"~ ~ e At
eralized definition of chaotic stickiness. We first note that thelime interval above. Under the ma, the orbit will lie in O

type of a chaotic orbit sticking sufficiently close to the for n=ny,...,n,—1 but outside O for n=n;—1 andn=n,
boundary of an island must coincide with the type of the(otherwise,r and 7. will coincide also at timesn=n;-1
island during the stickiness process. However, this coinciand/orn=n,+1). The segment of the orbit i® will there-
dence of the types may also occur if the chaotic orbitas  fore consist oN-1 points. We denote b (t-) the forward
“very” close to the island boundary: It expresses the fact thathackward exit time of any of these points fro® underM.
the chaotic orbit follows the itinerary of the island, specified|t s easy to see that theansit time t defined by[24] t=t,
by the type on the rotational level. This observation is at thert_-1, is equal to the length of the segmentN-1. The set
basis of our definition: We say that a chaotic orbit of tyge  of points in® having a given transit time will be denoted
“sticks” to an island chain of type=(I",w,c) if 7. coincides by C.. One can partitior® into the set<;, O=U;-,C;.
with 7during a time interval of, sayl iterations. This means As an example, we consider again the Al of the standard
that 7, and 7 have a common segment Nfresonance zones. map forK =6.4717 andv=1. Figure 4 shows a chaotic orbit
It is easy to see that according to this definition the chaotigticking to this Al for a long time interval oN=4 563 191
orbit sticks simultaneously to the island chains of type iterations; i.e., the orbit lies in the main resonamdé. for
=(I',w,c) for all admissible values of; the set of chains timesn in this interval. To determine the resonance in which
with ¢>1 will include, e.g., islands-around-islands hierar-the orbit lies at given tima, we use, as in Fig. 2, the effi-
chies near the boundary of a clas$e®-1) island (see pre- cient method introduced in Ref9], which avoids com-
vious section One expects that if strong trapping occurs in apletely the problem of finding the resonance boundaries. Us-
narrow “sticky layer” surrounding this boundary and adja-ing this method, we found that the forward exit time of the
cent to it, most chaotic orbits of type will approach this jnitial (n=0) point of the orbit above from the TO undkt is
layer asN— c. o o t,=3591 053 sincen=t,+1 is the first time at which the
To study in some detail first aspects of stickiness based of,p;t is not in resonance/1 (but rather inn+1/5); then,
the definition above, let us restrict ourselves, for simplicity,t_:N_t+_ The method was also used to calculate accurately
to the important case of an Al with pericek1 and typer  he setg’, for moderate values df starting from a large grid
=((0/1)1,w, 1) (see the example in the previous seclidle ot initial conditions covering uniformly the TO. The results
denote byD the TO of 0/1 andv/1 in which this Al lies and  are shown in Figs. 5 and 6. We can see from Fig. 6 that as
by M the map(1l) taken modulo the basic torus<x, p s increased’; becomes highly concentrated on an “annulus”
< 2. Consider now all the chaotic orbits whose type  surrounding the Al boundary and approaching it. Fe©9
coincides with 7 in some time intervaln=n,,...,n, (n,  [Fig. 6(c)] andt=499[Fig. 6(d)], C; already “wraps around”
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FIG. 6. Trapped sets; in the TOOp, of Fig. 3: (a) t=19, (b) t=29, (c) t=99, and(d) t=499. Plots(a)—(c) were produced starting from
the grid of initial conditions used in Fig. 5. In pléd), a grid of higher resolutionAx/27=Ap/27=5X 1075, was used. The inset ifa)
shows a small portion of the ségog), lying within the rectangular region indicated. This set appears to be a high-order approximation of a

horseshoe.

some island chains near the Al boundary. The structu® of sible concentration OCE(’) around the islands boundaries as
becomes more intricate due to the development of new hao-— ¢ is consistent with relatioi6) and the fact that the set
moclinic intersections and oscillations. Most prominent 0s-g¢ | islands in® is obviously contained imﬁ._mﬁno.
cillations are the five protuberances indicated by arrows in \ye denote by, the number of segments Of_|enqmnsit
Fig. 6(b), which follow faithfully the shape of the five-island {jme) t having initial conditions on a large grid covering
chain surrounding the Al. Interesting features of the ho-niformly the TO; the total number of points @ is thentk.
moclinic structure ofC; can be exhibited more clearly by The quantityk, corresponds to the “trapping statistics” first
looking, fort odd, at the subset” of C, consisting of all the  studied by Karney1] in connection with the stickiness prob-
points witht,=t_=(t+1)/2. It is easy to see that the S&"  lem in the Hénon map. Figure 7 shows a log-log plokgh

satisfies the relation the time interval kt=<10° for the example above. We see
o1 . that ast is variedk; exhibits oscillations, which appear also
C§0) C N MO- N MO. (6) for smallt in the main case stgdled |.n.Réﬂ.] [see Flg.'ﬁa).
n=—t,+1 n=-t, therd. In our case, the dynamical origin of these oscillations

) ) _ can be easily understood: they are due to the birth and de-
Since the TOO is a region bounded by stable and unstableyejopment of new homoclinic structures ¢ ast is in-
manifolds, one expects from the form of the right-hand sidezreased: compare, e.g., FigbB(t=29, k,=50 909 with Fig.

of relation(6) that the structure offio) should approximately 6(a) (t=19, k,=11 747. On averagek, clearly decays as a
resemble that of a horseshoe. This is shown in Fig. 5 for power law,k,«t™, a=~1.61. This decay cannot continue for
=1 (cgo):cl) and in the inset of Fig. @) for t=19. A pos-  arbitrarily larget since this will lead to a non-normalizable
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the proposed definition of stickiness. Initial conditions for all
the sticking orbits formpreciselythe TO region containing
the Al. Thus, a physically significant sticky layer can be
identified as thechaotic component of the TQhis is sepa-
rated from the rest of the chaotic regi@he “chaotic sea”
which doesnot accelerateby sharp boundaries—i.e., pieces
of stable and unstable manifolds.

This identification of the sticky layer provides its natural
extensionmuch beyond a narrow strip adjacent to the Al
boundary where the sticking timas usually quite long. The
TO can be fully partitioned into sticky “sublayers};, where
C,, t=1, consists of all orbit segments having precisely
lengtht in the TO—i.e., segments accelerating with the Al
for preciselyt iterations. Ast is increased(; gradually ap-
proaches the Al boundaiigee Fig. 6. The consideration of
all sticking times is necessary for studying the superdiffusion

log, ;1) and other stickiness-related phenomena in a nonasymptotic
time regime(which can bevery longin practice and for

FIG. 7. Log-log plot of the “trapping statistick; in the TOOp  understanding how precisely these phenomena set into their
of Fig. 3. The results were produced by starting, fortaftom the  asymptotic behaviofassuming it exists It is also necessary
high-resolution grid used in Fig.(8). The linear fit to the data for investigating the fingerprints of classical superdiffusion
(solid line) has slope~-1.61. in the quantized version of the system, where dynamical lo-

calization implies a finite maximal spread of a wave packet,
function tk, for the number of points ir;. An asymptotic reached in a finite timé[25].
power-law decay ok, must feature an exponent>2. The A first study of a nonasymptotic time regime was per-
time interval considered thus belongs to a nonasymptotiéormed in the previous section. The accurate results in Figs.
time regime. A transition from the decay in Fig. 7 to a faster6 and 7 show that the usual features attributed to “stickiness”
decay for large values of> 10° could not be observed due to in the asymptotic time limit— o« are exhibited by, already
limitations in our available computational resources. The acfor t<10® (with C, still far from being adjacent to the Al
curacy of the results in Figs. 6 and 7 was carefully checkedboundary: A relatively high concentration of orbit points on
by using a variety of different grids for the initial conditions a subregion ot [see Figs. &) and 6d)] and a clear power-
in the TO. law decay of the trapping statistiés (see Fig. 7.
These results cannot be reproduced by any empirical ap-
V. DISCUSSION AND CONCLUSIONS proach in which the trapping near an island is studied by
enclosing the island in aarbitrary region, a “box”(see, e.g.,

We now discuss some of the main results above. Accordref. [1]). As one can see from Figs. 5 andr® such region,
ing to a well-known phenomenological scendrld, 15, the  except of the TO, can completely contain the trapped accel-
superdiffusion of a chaotic ensembi@?)<n* with 1<u  erating sets, for all t if it will not also contain nonrelevant
<2, is due to the long-time trapping of the chaotic orbits inparts of the chaotic sea which do not accelerate but will be
a narrow “sticky layer” surrounding the boundary of an Al nevertheless considered as “trapped.” In general, all the sets
and adjacent to ifsuch as the sticky region in Fig).uring  C; sticking to a given island chain are determined from the
the trapping time, an orbit accelerates together with the Akensemble of chaotic orbits whose tyfgequence of reso-
and, after it leaves the layer, it enters the “chaotic sea” wheraances visited coincides with that of the island chain in
it performs normal diffusion. A basic question concerns asome time interval. This ensemble is easily found using the
precise and physically significant identification of the sticky efficient method developed in Ref9] which completely
layer—i.e., precisely which part of the chaotic region accel-avoids the problem of calculating the resonance boundaries.
erates with the Al for at least some finite number of itera-Thus, the dynamically well-defined and practically appli-
tions? The results in the previous section provide an answearable approach to stickiness introduced in this paper can
to this question. An orbit accelerates with the Al in someform the basis for a most systematic study of anomalous
time interval if and only if it “sticks” to the Al according to chaotic transport and related phenomena.
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